derivatized phosphate group at C-2'. Ion 1 (m/e)103) is also observed, reflecting the absence of the phosphate group at C-5'. Similarly, in 3',5'-cyclic AMP-(TMS)₃,^{3e} i, j, and k are unshifted from Figure 1b, while m and 1 are absent. A peak having no counterpart in 5'-AMP is present at m/e 310, due to carbons C-2' through C-5' of the ribose skeleton, plus their substituents, including the cyclic phosphate trimethylsilyl ester.

Mass spectra of the TMS derivatives of the bases^{3c,d} are simple, consisting mainly of M and M - 15,¹² reflecting the resistance of the aromatic nucleus toward fragmentation.¹³ While of little use in a detailed structural sense, their spectra appear well suited for analytical applications.14

The uncommon elemental compositions of nucleotide, nucleoside, and base TMS derivatives make their highresolution mass spectra amenable to computer-based identification techniques. We are currently exploring the direct analysis of nucleic acid hydrolysates in this manner,¹⁵ based on the TMS derivatives described above.

(12) For example, % Σ values for M and M – 15: uracil-(TMS)₂, 9, 17; thymine-(TMS)₂, 8, 17; cytosine-(TMS)₂, 10, 12; adenine-(TMS)₂, 9, 30; guanine-(TMS)3, 7, 18.

9, 30; guanine-(1MS)3, 7, 18.
(13) See, for instance: (a) H. Budzikiewicz, C. Djerassi, and D. H. Williams, "Mass Spectrometry of Organic Compounds," Holden-Day, Inc., San Francisco, Calif., 1967, pp 585, 592; (b) J. M. Rice and G. O. Dudek, J. Am. Chem. Soc., 89, 2719 (1967).
(14) P. M. Krueger and J. A. McCloskey, unpublished experiments.
(15) D. M. Desiderio, N. R. Earle, P. M. Krueger, A. M. Lawson, L. C. Smith, R. N. Stillwell, K. Tsuboyama, J. Wijtvliet, and J. A. McCloskey, Spectrometry, and MacCloskey, Spectrometry, and MacCloskey.

McCloskey, Sixteenth Annual Conference on Mass Spectrometry and Allied Topics, Pittsburgh, Pa., May 1968.

(16) Recipient of a Robert A. Welch Foundation Postdoctoral Fellowship.

(17) Postdoctoral fellowship support through the National Institutes of Health (Grant 5 TO 1 HE 05703) is gratefully acknowledged.

James A. McCloskey, A. M. Lawson¹⁶ K. Tsuboyama, P. M. Krueger,¹⁷ R. N. Stillwell Institute for Lipid Research and Department of Biochemistry Baylor University College of Medicine, Houston, Texas 77025 Received April 19, 1968

Comparative Stereochemical Effects of Sulfur and Oxygen Donor Atoms in Four- and Six-Coordinate **Metal Complexes**

Sir:

In complexes of potentially variable stereochemistry, observations from a rapidly growing body of evidence indicate that unsaturated, sulfur-containing, chelating ligands may induce preferential stability of structures which are either unusual or of widespread occurrence. Pertinent examples include the planar structures of bisdithiolene complexes with a variety of metal ions and the trigonal prismatic structures of certain trisdithiolenes.¹ Particular stereochemical consequences of sulfur donor atoms are most clearly recognized and assessed by structural comparisons with complexes identical in constitution except for the donor atom sets. Here are presented two structural comparisons: one of a qualitative nature for six-coordinate complexes (1), and the other quantitative for four-coordinate complexes (2), which reveal the relative stereochemical effects of sulfur vs. oxygen donor atoms.

(1) A. L. Balch, I. G. Dance, and R. H. Holm, J. Am. Chem. Soc., 90, 1139 (1968), and references therein; J. A. McCleverty, Progr. Inorg. Chem., in press.

cis (facial) and trans (meridianal) isomers are possible for complexes 1 with X = O, $R \neq CH_{3}$,^{2,3} or X = S. Equilibrium constants for the trans \rightleftharpoons cis reaction of tris(β -diketonato)metal(III) complexes are considerably less than statistical,² indicating preferential stability of the trans form. In sharp contrast, pmr studies of tris-(β -thioketonato)cobalt(III) complexes (CDCl₃, \sim 30°) reveal exclusive population of the cis isomer for species with $R = CH_{3}$, ⁴ Ph, *i*-Pr, *t*-Bu; one α -CH₃ or β -H signal is observed consistent with C_3 (or C_{3v}) symmetry. Similarly, only the cis isomer was detectable in an analogous series of V(III) complexes ($R = CH_3$, Ph, *i*-Pr) whose lability ensures equilibrium isomer distributions and whose large contact shifts minimize the possibility of accidental chemical shift degeneracy and an incorrect structural assignment.^{3,5} Chemical shift data for a typical pair of tris(β -thicketonates) (R = Ph) are the following: α -CH₃, -141, -4193; β -H, -395, -3507 cps (Co(III), V(III), TMS reference). Heating the thio V(III) complex with R = i-Pr in CDCl₃ for 24 hr at 118° produced no trans rearrangement. Preferential cis stability may arise in part from nonbonded $S \cdots S$ interactions in the S₃ unit, similar to those which may assist stabilization of trigonal prismatic coordination.6

The dynamic planar \rightleftharpoons tetrahedral equilibrium has been demonstrated for Ni(R-PhHR_{α})₂ (R_{α} = H, CH₃) in noncoordinating solvents and thermodynamic data derived from analysis of the temperature dependence of the contact shifts.⁷⁻⁹ Analogous thio complexes $(R_{\alpha} = H)$, an unexplored group of compounds,¹⁰ were prepared by nonaqueous chelation⁷ employing β aminothiones obtained by the reaction¹¹ of 3-phenyl-1,2-dithiolium perchlorate¹² with primary amines. For $Ni(t-Bu-SPhHH)_2$ close correspondence of solution (3.18 BM, CHCl₃) and solid-phase (3.20 BM) magnetic moments indicates that, like Ni(t-Bu-PhHH)2,9 the mole fraction of tetrahedral form (N_t) is equal to 1 in solution. For both, $-\Delta F^{300} \circ > 2.8$ kcal/mole and no sterochemical differences are observable. However, for the pairs $Ni(R-SPhHH)_2-Ni(R-PhHH)_2$, R = Amp (CH₃CHCH₂Ph), sec-Bu, the equilibrium positions in carbon tetrachloride or chloroform solution are such that detectable amounts of both stereoisomers of all

(2) R. C. Fay and T. S. Piper, J. Am. Chem. Soc., 84, 2303 (1962); 85, 500 (1963).

(3) F. Röhrscheid, R. E. Ernst, and R. H. Holm, Inorg. Chem., 6, 1315 (1967).

(4) See also A. Yokoyama, S. Kawanishi, M. Chikuma, and H. Tanaka, *Chem. Pharm. Bull.* (Tokyo), **15**, 540 (1967).

(5) F. Röhrscheid, R. E. Ernst, and R. H. Holm, Inorg. Chem., 6, 1607 (1967); J. Am. Chem. Soc., 89, 6472 (1967).
(6) R. Eisenberg and H. B. Gray, Inorg. Chem., 6, 1844 (1967).
(7) G. W. Everett, Jr., and R. H. Holm, J. Am. Chem. Soc., 87, 2117

(1965); 88, 2442 (1966).

G. W. Everett, Jr., and R. H. Holm, *Inorg. Chem.*, 7, 776 (1968).
 R. E. Ernst, M. J. O'Connor, and R. H. Holm, *J. Am. Chem. Soc.*,

89, 6104 (1967).

(10) Only several examples have been reported; cf. E. Uhlemann, Z. Naturforsch., 21b, 592 (1966).

(11) D. Leaver, D. M. McKinnon, and W. A. H. Robertson, J. Chem. Soc., 32, (1965)

(12) E. Klingsberg, J. Am. Chem. Soc., 83, 2934 (1961).

complexes are present over the entire temperature range of contact shift measurements (240-360°K). Active [(+,+), (-,-)] and meso (+,-) diastereoisomers are generated by the two asymmetric ligand centers; as in other cases^{9,13} their pmr signals are clearly resolved and identifiable by preparation of active isomers from resolved amines. Thermodynamic data for comparison, obtained by a procedure described⁹ using β -H signals and hyperfine coupling constants ($a_{\beta H}$) from the R = t-Bu complexes, are presented in Table I. Two important conclusions

Table I. Thermodynamics of the Planar-Tetrahedral Structural Conversion of Nickel(II) Complexes 2 (X = O, S) in Carbon Tetrachloride Solution^a

	Pair	Isomer	ΔH , cal/ mole	Δ <i>S</i> , eu	ΔF^{323} °, ^b cal/ mole	Nt ^{323° b}
A	Ni(Amp-PhHH) ₂ Ni(Amp-SPhHH) ₂	active	320 3580	3.06 11.4	-1310 -98	0.89 0.54
B	Ni(Amp-PhHH)2 Ni(Amp-SPhHH)2	meso	399 2910	4.70 11.4		0.85 0.77
С	Ni(<i>sec-</i> Bu–PhHH)2 Ni(<i>sec-</i> Bu–SPhHH)2	active	892 3490	5.98 10.1	1040 221	0.83 0.41
D	Ni(<i>sec-</i> Bu–PhHH)2 Ni(<i>sec-</i> Bu–SPhHH)2	meso	1230 3120	6.82 9.98	969 106	0.82 0.54

^a Data calculated from measured proton contact shifts (240–360°K) and eq 3 in ref 9 using $a_{\beta \rm H}$ (X = O) = -0.884 G (from Ni(*t*-Bu-PhHH)₂) and $a_{\beta \rm H}$ (X = S) = -0.717 G (from Ni(*t*-Bu-SPhHH)₂). ^b Given at the indicated temperature for comparison with data in ref 9.

applicable within and below the temperature interval of measurement emerge for the pairs A-D compared: (i) $\Delta F_{\rm S} - \Delta F_{\rm O} = \Delta \Delta F > 0$, demonstrating that sulfur effects greater stabilization of planar stereochemistry than oxygen; (ii) $|\Delta\Delta H| > |T\Delta\Delta S|$, indicating that inequalities in stereochemical populations are due to enthalpy rather than entropy effects. On the basis of arguments developed elsewhere,8 differences in metalligand bonding in the two stereoisomers are considered principally responsible, with a large extent of π bonding in the planar thio complexes a plausible source of the stability differences. Comparison of experimental and calculated spin densities, currently underway, should serve to establish relative degrees of π bonding in the tetrahedral O, S stereoisomers. Finally, conclusions i and ii are unchanged by comparisons in CDCl₃ solutions, the following $\Delta\Delta F = \Delta\Delta H - T\Delta\Delta S$ relationships having been obtained for the indicated pairs: A, 5060 - 12.0T; B, 3960 - 11.5T; C, 3900 - 8.0T; D, 3250 - 7.2T.

Acknowledgment. This research was supported by National Science Foundation Grant GP-7576X.

(13) R. H. Holm, A. Chakravorty, and G. O. Dudek, J. Am. Chem. Soc., 86, 397 (1964); R. E. Ernst, M. J. O'Connor, and R. H. Holm, *ibid.*, in press.

(14) National Science Foundation Predoctoral Fellow 1966 to present.

R. H. Holm, D. H. Gerlach, J. G. Gordon, II,¹⁴ M. G. McNamee Department of Chemistry, Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Received May 24, 1968

Restricted Rotation Around Phosphorus–Nitrogen Bonds¹

Sir:

We wish to report the first measurement of a rotational barrier around a P-N bond. The ¹H nmr spectrum of chloro(dimethylamino)phenylphosphine (1), $C_8H_5P(Cl)N(CH_3)_2$, displayed the expected doublet in the methyl region at ambient temperature with $J_{PNCH} =$ 12.6 Hz and τ 7.4.² On cooling, the methyl doublet broaded (Figure 1b) and eventually coalesced. Below

Figure 1.

 -60° (Figures 1d, e) two clearly defined doublets developed. At -80° the low-field doublet (τ 7.22) had $J_{PNCH} = 19.2$ Hz and the high-field doublet (τ 7.75) had

⁽¹⁾ This work was supported by the Air Force Office of Scientific Research, through Grant No. AF-AFOSR-1050-67, and the Robert A. Welch Foundation.

⁽²⁾ All spectra were measured by Mr. E. J. Burshnick on a Varian Associates HA-100 spectrometer equipped with a calibrated variable-temperature accessory. Approximately 15% solutions of the (dialkyl-amino)phosphines in CCl₂F were sealed *in vacuo* along with a few per cent TMS as internal standard. Chloro(dibenzylamino)phenylphosphine was dissolved in CDCl₂ (5% solution) with CH₂Cl₂ internal standard.